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Outline

1 More on Arrays
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*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!
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*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.
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Making Sense of the Pointers

A Useful Assumption

Assume that A points to A[0] instead of A[0][0].

Then pointer arithmetic as above has no inconsistency.

Therefore, even though not true, it is a useful assumption to make.
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