
ESc 101: Fundamentals of Computing

Lecture 23

Feb 24, 2010

Lecture 23 () ESc 101 Feb 24, 2010 1 / 5

Outline

1 More on Arrays

Lecture 23 () ESc 101 Feb 24, 2010 2 / 5

*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!

Lecture 23 () ESc 101 Feb 24, 2010 3 / 5

*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!

Lecture 23 () ESc 101 Feb 24, 2010 3 / 5

*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!

Lecture 23 () ESc 101 Feb 24, 2010 3 / 5

*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!

Lecture 23 () ESc 101 Feb 24, 2010 3 / 5

*A and **A

Consider int A[SIZE][SIZE] declaration.

As observed, this declares SIZE+1 pointers: A, A[0], ..., A[SIZE-1].

A[i] points to the element A[i][0].

A also points to the element A[0][0].

A[0], ..., A[SIZE-1] can be viewed as an array of pointers.

In that case, A should point to A[0]!

Lecture 23 () ESc 101 Feb 24, 2010 3 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

*A and **A

However, there is no need to store the address of A[0] as we never
change the contents of A[0].

So the treatment of A is a little inconsistent:
I It points to A[0][0].
I It also “behaves” as pointer to A[0], in that *A is the same as A[0].
I Which, of course, means that both A and *A are addresses of A[0][0]!

Since *(A[0]) is the location A[0][0] and *A is same as A[0], **A
is also the location A[0][0].

Similarly, *(A+1) is same as A[1], *(A+2) is same as A[2] as so on.

Lecture 23 () ESc 101 Feb 24, 2010 4 / 5

Making Sense of the Pointers

A Useful Assumption

Assume that A points to A[0] instead of A[0][0].

Then pointer arithmetic as above has no inconsistency.

Therefore, even though not true, it is a useful assumption to make.

Lecture 23 () ESc 101 Feb 24, 2010 5 / 5

Making Sense of the Pointers

A Useful Assumption

Assume that A points to A[0] instead of A[0][0].

Then pointer arithmetic as above has no inconsistency.

Therefore, even though not true, it is a useful assumption to make.

Lecture 23 () ESc 101 Feb 24, 2010 5 / 5

Making Sense of the Pointers

A Useful Assumption

Assume that A points to A[0] instead of A[0][0].

Then pointer arithmetic as above has no inconsistency.

Therefore, even though not true, it is a useful assumption to make.

Lecture 23 () ESc 101 Feb 24, 2010 5 / 5

	More on Arrays

